Bioinformatics and the Cloud

QUESTnet 2013
2-5 July, Royal Pines Resort, Queensland

Andrew Yates
Ensembl Core Project Leader

European Molecular Biology Laboratory,
European Bioinformatics Institute
What is Bioinformatics?

How can Computing and Biology enable each other?
Understanding Life – from molecules to systems

- Parts Dictionary
- Thesaurus (interactions)
- Complete Networks (Circuit Diagrams)
- Atlas – what happens where
- How it works & when (simulations)
- How it goes wrong and how to put it right
What is EMBL-EBI?

- Provides data and software support for Bioinformatics
- Part of the European Molecular Biology Laboratory
- International non-profit research institute
- 21 member states plus associate
- 1,500 members of staff across 5 outstations
- European Bioinformatics Institute is a UK outstation
What Does EMBL-EBI Provide?

• Archives
 • Records of scientific publications and output
 • Ensures stability future reproducibility
• Value-added resources
 • Usually built from archived data
 • Enables science
 • Data analysis by world leaders
• Research and special projects
 • Investigating biology, outreach & training to text mining
EMBL Australia

• 1st associate member of EMBL
• Joined in 2008
• Promotes excellence in molecular biology in Australia
• BRAEMBL (Bioinformatics Resources Australia – EMBL)
 • Institute for Molecular Bioscience (IMB) at University of Queensland
 • Currently mirrors 13TB of EBI data where beneficial & practical
 • Without local expertise Australian scientists cannot make novel insights
Bioinformatics – Understanding DNA

• 1st genome sequenced in 1976
 • bacteriophage MS2 – 3,569 base pairs long

• Human genome released in 2000*
 • 3.2bp (billion base pairs)

• 1,252 complex organism genomes now sequenced

* Continually refined since then
DNA – How Can We Use It?

DNA extraction

Sequencing

DNA reads

New Genomes

Diagnostic

Population Genetics

What am I presenting today?

• 3 case studies of how clouds are aiding bioinformatics

• Two as a cloud consumer
 • Ensembl and Amazon Web Services - Content Distribution
 • Helix Nebula – Cloud Pipelines

• One as a cloud provider
 • Embassy Cloud - IaaS

• A novel method of data archiving
Case Study One - Ensembl & AWS

- Ensembl is a world leader in the provision of genome data and annotation
- Based at EMBL-EBI and the Wellcome Trust Sanger Institute, Cambridge
- Launched in 1999
- Approximately 5 data and code releases per year
- Highly accessed from around the world
 - Over 20 million hits per month
 - 2 million unique visitors per year
Ensembl – The Geolocation Problem

- A west coast USA user; ~11 seconds for 1 page
- A UK user; ~2 seconds for the same page
- 2009 we launched our 1st US West Coast mirror
 - Do-it-yourself content delivery network
 - Buy hardware
 - Ship servers and an engineer to California
 - Cut our LA load time down to ~3 seconds
Ensembl – An AWS Success Story

- Cost
 - We can approx. host all 3 AWS mirrors for one DIY server
 - “Free” upgrades
- No need to travel
- Website redundancy
- Deployment
 - One SOP required to deploy on multiple sites
 - Makes hosting an Ensembl Sydney mirror possible
 - The sun never sets on Ensembl
Case Study Two – Helix Nebula

Setup with the idea that in the future compute will be in the cloud.
A European cloud computing partnership: big science teams up with big business

Strategic Plan

- Establish multi-tenant, multi-provider cloud infrastructure
- Identify and adopt policies for trust, security and privacy
- Create governance structure
- Define funding schemes

To support the computing capacity needs for the ATLAS experiment

Setting up a new service to simplify analysis of large genomes, for a deeper insight into evolution and biodiversity

To create an Earth Observation platform, focusing on earthquake and volcano research

http://www.helix-nebula.eu
contact@helix-nebula.eu
@HelixNebulaSC
HelixNebula.TheScienceCloud
 Timeline

Set-up (2011)
- Select flagships use cases
- Identify service providers
- Define governance model

Pilot phase (2012-2014)
- Deploy flagships
- Analysis of functionality, performance & financial model
- Success Stories

Full-scale cloud service market (2014 …)
- More applications
- More services
- More users,
- More service providers

co-funded by EC under grant 312301 with 1.8M€
DNA Sequencing – Outcompetes Moore’s Law

Wetterstrand KA. DNA Sequencing Costs: Data from the NHGRI Genome Sequencing Program (GSP) Available at: www.genome.gov/sequencingcosts. Accessed 7th June 2013
DNA Sequencing – Data Volumes

• Population studies
 • ~7 billion *Homo sapiens*

• Sequencers are everywhere
 • ~8.7 million species in the world
 • Agriculture – disease resistant traits
 • Epidemiology – tracing infection
 • Deep sea explorations

• More than 1,500 high throughput sequencers in the world
 • 3.6PB a day
 • 1.1 – 2.2 ExaBytes a year
DNA Sequencing – Next Generation Technologies

Illumina MiSeq – a $125K bench-top sequencer available today
2.3 human genomes per day

Oxford Nanopore MinION; a $900 laptop sequencer in development
Tens of Gb per day
Helix Nebula – Genome Annotation

Whilst our capacity to read DNA has increased we still require a way to assemble a genome and bring context (primarily genes) to it.

Ensembl has developed well respected pipelines to efficiently locate Genes on genomes.
Helix Nebula – Genome Annotation as a Flagship Project

- Annotation requires expertise and compute
 - Makes it a good challenge for Helix Nebula

- Challenges to the cloud providers
 - Can they deliver the compute?
 - Can they deliver the IO?
 - Can they deliver the support?

- Can we provide pan-European genome analysis tools?
Helix Nebula – Conclusions

- All flagships have deployed scientific applications
- Each involving tens of thousands of jobs
- Running on 3 data centres
- Developing a model for future federated clouds
 - Building on lessons from the proof of concept
 - Interoperability
 - Cloud federation
Case Study Three – Embassy Cloud

- We have very large data sets
 - 2PB of single copy data held in European Nucleotide Archive’s (ENA) Sequence Read Archive (SRA)
 - 16-20PB of disk is spun at EMBL-EBI

- Geography and network still a limiting factor
 - Code is much smaller than data

- EMBL-EBI is piloting Infrastructure as a Service (IaaS)
 - Learning from other cloud providers
Embassy Cloud – Details

- Aims to provide secure, flexible infrastructure to tenant organisations close to EMBL-EBI’s data
 - High bandwidth
 - Low latency
- Tenants are both academic & commercial
- Hosted at EMBL-EBI but is outside of our LAN
- Built on top of VMware’s vCloud Director
 - Hypervisors are clustered meaning automatic VM restart
 - Machine maintenance without cloud downtime
Embassy Cloud - Infrastructure

6x HP BL490c
12 cores
128GB

10Gb switches
10Gb network

Basic config:
10GHz
32GB

Internal

Tenant clouds

The internet and other EMBL-EBI resources
Embassy Cloud – Results

• 8 organisations on Embassy Cloud for multiple uses

• One live mirror service (http://europe.omim.org/)

• 30 VMs are running at any one time

• Over 100 VMs have been deployed during the pilot phase

• Provides users with a viable mechanism to circumvent geography
Archiving Data in DNA

- We think about DNA a lot
- We think about long term storage a lot
- DNA is very robust
- DNA is data dense
 - 1g of DNA can store 2PB including error correction
- What if we can store data as DNA?
Archiving DNA – The Theory

LETTER

Towards practical, high-capacity, low-maintenance information storage in synthesized DNA

Nick Goldman¹, Paul Bertone¹, Siyuan Chen², Christophe Dessimoz¹, Emily M. LeProust², Botond Szép³ & Ewan Birney¹

- Not the first attempt at encoding data in DNA
- A number of unique developments
 - Data representation in base-3 rather than binary
 - DNA encoding avoids runs of the same nucleotide
 - 4 fold redundancy
Archiving Data – Converting Binary to DNA

Huffman encoding

Uniform fragments indicate man-made origins
“From fairest creatures we desire increase,
That thereby beauty’s rose might never die,
But as the riper should by time decease,
His tender heir might bear his memory:
But thou contracted to thine own bright eyes,”
Archiving DNA – Results and the Future

• DNA synthesised by Agilent Technologies
• All files were recovered
• DNA synthesis costs $12K per MB
 • Same as 1MB in 1980
 • A human genome would cost $38,400,000 to make
• Technique has been patented
• A viable 1000 year data archive
• Within a decade we believe this will be cost effective for 50 year archives
Conclusions

• Bioinformatics continues to push our capacity and ability to store, process and display data

• Science requires a global perspective

• Cloud infrastructures present unique opportunities
 • Augment our data processing
 • Bringing consumers & data together

• Bioinformatics can and will continue to help computing
Acknowledgments

- Ensembl
 - Stephen Keenan, Stephen Trevanian
- EMBL-EBI
 - Nick Goldman, Ewan Birney, Andy Cafferkey, Paul Flicek
- EMBL
 - Rupert Lueck
- Agilent Technologies
 - Siyuen Chen, Emily LeProust
- All staff at EMBL-EBI and EMBL

- Funding
 - Wellcome Trust
 - EMBL
 - National Human Genome Research Institute
 - BBSRC
 - European Commission Framework Programme 7
 - GEN2PHEN
 - Quantomics
 - ESGI
 - BLUePRINT
Questions?