

RFC1998

- Informational RFC
- Describes how to implement loadsharing and backup on multiple inter-AS links
 - BGP communities used to determine local preference in upstream's network
- Gives control to the customer
- Simplifies upstream's configuration simplifies network operation!

RFC1998

Community values defined to have particular meanings:

ASx:100 set local pref 100 preferred route

ASx:90 set local pref 90 backup route if dualhomed on ASx

ASx:80 set local pref 80 main link is to another ISP with

same AS path length

ASx:70 set local pref 70 main link is to another ISP

RFC1998

Sample Customer Router Configuration

```
router bgp 107

neighbor x.x.x.x remote-as 109

neighbor x.x.x.x description Backup ISP

neighbor x.x.x.x route-map config-community out

neighbor x.x.x.x send-community

!

ip as-path access-list 20 permit ^$

ip as-path access-list 20 deny .*

!

route-map config-community permit 10

match as-path 20

set community 109:90
```

RFC1998

Sample ISP Router Configuration

```
! Homed to another ISP
ip community-list 70 permit 109:70
! Homed to another ISP with equal ASPATH length
ip community-list 80 permit 109:80
! Customer backup routes
ip community-list 90 permit 109:90
!
route-map set-customer-local-pref permit 10
```

set local-preference 70

match community 70

RFC1998

Sample ISP Router Configuration

```
route-map set-customer-local-pref permit 20
match community 80
set local-preference 80
!
route-map set-customer-local-pref permit 30
match community 90
set local-preference 90
!
route-map set-customer-local-pref permit 40
set local-preference 100
```

1

RFC1998

Supporting RFC1998
 many ISPs do, more should
 check AS object in the Internet
 Routing Registry
 if you do, insert comment in AS object in the IRR

Two links to the same ISP

AS109 proxy aggregates for AS 65534

Two links to the same ISP (one as backup only)

- Announce /19 aggregate on each link primary link makes standard announcement
 backup link sends community
- When one link fails, the announcement of the /19 aggregate via the other link ensures continued connectivity

Two links to the same ISP (one as backup only)

Router A Configuration

```
router bgp 65534

network 221.10.0.0 mask 255.255.224.0

neighbor 222.222.10.2 remote-as 109

neighbor 222.222.10.2 description RouterC

neighbor 222.222.10.2 prefix-list aggregate out

neighbor 222.222.10.2 prefix-list default in

!

ip prefix-list aggregate permit 221.10.0.0/19

ip prefix-list default permit 0.0.0.0/0

!
```

Two links to the same ISP (one as backup only)

Router B Configuration

```
router bgp 65534

network 221.10.0.0 mask 255.255.224.0

neighbor 222.222.10.6 remote-as 109

neighbor 222.222.10.6 description RouterD

neighbor 222.222.10.6 send-community

neighbor 222.222.10.6 prefix-list aggregate out

neighbor 222.222.10.6 route-map routerD-out out

neighbor 222.222.10.6 prefix-list default in

neighbor 222.222.10.6 route-map routerD-in in

!
..next slide
```

Two links to the same ISP (one as backup only)

```
ip prefix-list aggregate permit 221.10.0.0/19
ip prefix-list default permit 0.0.0.0/0
!
route-map routerD-out permit 10
match ip address prefix-list aggregate
set community 109:90
route-map routerD-out permit 20
!
route-map routerD-in permit 10
set local-preference 90
!
```

Two links to the same ISP (one as backup only)

Router C Configuration (main link)

```
router bgp 109
neighbor 222.222.10.1 remote-as 65534
neighbor 222.222.10.1 default-originate
neighbor 222.222.10.1 prefix-list Customer in
neighbor 222.222.10.1 prefix-list default out!
ip prefix-list Customer permit 221.10.0.0/19
ip prefix-list default permit 0.0.0.0/0
```

Two links to the same ISP (one as backup only)

Router D Configuration (backup link)

```
router bgp 109
neighbor 222.222.10.5 remote-as 65534
neighbor 222.222.10.5 default-originate
neighbor 222.222.10.5 prefix-list Customer in
neighbor 222.222.10.5 route-map bgp-cust-in in
neighbor 222.222.10.5 prefix-list default out
!
ip prefix-list Customer permit 221.10.0.0/19
ip prefix-list default permit 0.0.0.0/0
!
..next slide
```

Two links to the same ISP (one as backup only)

```
ip prefix-list Customer permit 221.10.0.0/19
ip prefix-list default permit 0.0.0.0/0
!
ip community-list 90 permit 109:90
!
<snip>
route-map bgp-cust-in permit 30
match community 90
set local-preference 90
route-map bgp-cust-in permit 40
set local-preference 100
```

Two links to the same ISP (one as backup only)

Router E Configuration

```
router bgp 109

network 221.10.0.0 mask 255.255.224.0

neighbor 222.222.10.17 remote-as 110

neighbor 222.222.10.17 filter-list 1 out !

ip as-path access-list 1 deny ^(65534_)+$

ip as-path access-list 1 permit ^$

ip route 221.10.0.0 255.255.224.0 null0
```

- Router E removes prefixes in the private AS from external announcements
- Private AS still visible inside AS109

Two links to different ISPs (one as backup only)

Announce /19 aggregate on each link

main link makes sends community 109:100 - this sets local pref in AS109 to 100

backup link sends community 108:80 - this sets local pref in AS108 to 80

 When one link fails, the announcement of the /19 aggregate via the other link ensures continued connectivity

Two links to different ISPs (one as backup only)

- Note that this assumes that AS109 and AS108 are interconnected
- If they are not, AS path length "stuffing" has to be used too

but that can be done on a per community basis also

RFC1998++

Two links to different ISPs (one as backup only)

Router A Configuration

```
router bgp 107
network 221.10.0.0 mask 255.255.224.0
neighbor 222.222.10.1 remote-as 109
neighbor 222.222.10.1 prefix-list aggregate out
neighbor 222.222.10.1 route-map routerC-out out
neighbor 222.222.10.1 prefix-list default in
!
ip prefix-list aggregate permit 221.10.0.0/19
ip prefix-list default permit 0.0.0.0/0
!
route-map routerC-out permit 10
set community 109:100
```

Two links to different ISPs (one as backup only)

Router B Configuration

```
router bgp 107
network 221.10.0.0 mask 255.255.224.0
neighbor 220.1.5.1 remote-as 108
neighbor 220.1.5.1 prefix-list aggregate out
neighbor 220.1.5.1 route-map routerD-out out
neighbor 220.1.5.1 prefix-list default in
neighbor 220.1.5.1 route-map routerD-in in
.next slide
```

Two links to different ISPs (one as backup only)

```
ip prefix-list aggregate permit 221.10.0.0/19
ip prefix-list default permit 0.0.0.0/0
!
route-map routerD-out permit 10
set community 108:80
!
route-map routerD-in permit 10
set local-preference 80
```

Two links to different ISPs (one as backup only)

Router D

sees path from router B with community 108:80 set - sets local preference to 80 sees path from peering with AS109 - default local preference is 100 local-pref comes before AS Path length highest local-pref wins

traffic for AS107 is sent to AS109

Two links to different ISPs (one as backup only)

Router D

Only requires RFC1998 configuration no per customer configuration scalability!

Two links to different ISPs (one as backup only)

 If AS107 wants to make the link to AS108 the main link

sends community 108:100 to router C sends community 109:80 to router B

 AS108 and AS109 NOC intervention not required

RFC1998++

RFC1998 is okay for "simple" multihomed customers

assumes that upstreams are interconnected

RFC1998++

unofficial but often used additions by many ISPs

assumes nothing!

RFC1998++ • More community definitions: ASx:140 set local pref 140 set local pref high on upstreams ASx:130 set local pref 130 set local pref low on upstreams ASx:120 set local pref 120 more preferred (opposite to ASx:80) <RFC1998 definitions> ASx:60 set local pref 60 ASx:90 but add 2 times AS PATH ASx:50 set local pref 50 don't announce to any peer ASx:40 set local pref 40 and set local pref high on upstreams ASx:30 set local pref 30 and set local pref low on upstreams (and variations on this theme depending on local conditions, e.g.

IXPs, domestic vs. international transit, etc.)

Two links to different ISPs (RFC1998++)

Announce /19 aggregate on each link

main link makes sends community 109:100 - this sets local pref in AS109 to 100

backup link sends community 108:60 - this sets local pref in AS108 to 60

 When one link fails, the announcement of the /19 aggregate via the other link ensures continued connectivity

Two links to different ISPs (RFC1998++)

Router A Configuration

```
router bgp 107
network 221.10.0.0 mask 255.255.224.0
neighbor 222.222.10.1 remote-as 109
neighbor 222.222.10.1 send-community
neighbor 222.222.10.1 prefix-list aggregate out
neighbor 222.222.10.1 prefix-list aggregate out
neighbor 222.222.10.1 prefix-list default in
!
ip prefix-list aggregate permit 221.10.0.0/19
ip prefix-list default permit 0.0.0.0/0
!
route-map routerB-out permit 10
set community 109:100
```

Two links to different ISPs (RFC1998++)

Router B Configuration

```
router bgp 107
network 221.10.0.0 mask 255.255.224.0
neighbor 220.1.5.1 remote-as 108
neighbor 220.1.5.1 prefix-list aggregate out
neighbor 220.1.5.1 route-map routerD-out out
neighbor 220.1.5.1 prefix-list default in
neighbor 220.1.5.1 route-map routerD-in in
..next slide
```

Two links to different ISPs (RFC1998++)

```
ip prefix-list aggregate permit 221.10.0.0/19
ip prefix-list default permit 0.0.0.0/0
!
route-map routerD-out permit 10
set community 108:60
!
route-map routerD-in permit 10
set local-preference 80
```

7

Two links to different ISPs (RFC1998++)

Router D Configuration

```
router bgp 108

neighbor 220.1.5.2 remote-as 109

neighbor 220.1.5.2 default-originate

neighbor 220.1.5.2 prefix-list Customer in

neighbor 220.1.5.2 route-map bgp-cust-in in

neighbor 220.1.5.2 prefix-list default out
!

ip prefix-list Customer permit 221.10.0.0/19

ip prefix-list default permit 0.0.0.0/0
!
..next slide
```

Two links to different ISPs (RFC1998++)

```
ip prefix-list Customer permit 221.10.0.0/19
ip prefix-list default permit 0.0.0.0/0
!
ip community-list 60 permit 108:60
!
<snip>
  route-map bgp-cust-in permit 10
  match community 60
  set local-preference 60
  set community 108:4000
<snip>
```

Two links to different ISPs (RFC1998++)

Router D

sees path from router B with community 108:60 set:

sets local pref to 60

changes community to AS108 community which prepends two times AS108

Two links to different ISPs (RFC1998++)

Router D (contd)

sees path from AS109 via Internet - default local preference is 100

local-pref comes before AS Path length

highest local-pref wins

traffic for AS107 is sent via Internet

Two links to different ISPs (RFC1998++)

Router E Configuration

```
router bgp 108
neighbor x.x.x.x remote-as UP-ASN
neighbor x.x.x.x prefix-list Upstream in
neighbor x.x.x.x route-map upstream-in in
neighbor x.x.x.x prefix-list AS108-list out
neighbor x.x.x.x route-map upstream-out out
!
..next slide
```

Two links to different ISPs (RFC1998++)

```
! Customer peers who want AS-PATH prepend
ip community-list 1 permit 108:4000
! Customer peers who want control one set away from us
ip community-list 2 permit 108:4010
!

<snip>
route-map upstream-out permit 10
match community 1
set as-path prepend 108 108
route-map upstream-out permit 20
match community 2
set community UP-ASN:80
<snip>
```


Two links to different ISPs (RFC1998++)

- If AS107 wants to make the link to AS108 the main link
 - sends community 108:100 to router D sends community 109:60 to router C
- AS108 and AS109 NOC intervention not required

Communities

- Communities are fun! ☺
- And they are extremely powerful tools
- Think about community policies, e.g. like RFC1998++
- Supporting extensive community usage makes customer configuration easy
- Watch out for routing loops!

