

Border Gateway Protocol

- Routing Protocol used to exchange routing information between networks exterior gateway protocol
- RFC1771
 work in progress to update
 draft-ietf-idr-bgp4-10.txt
- Currently Version 4
- Runs over TCP

BGP

- Path Vector Protocol
- Incremental Updates
- Many options for policy enforcement
- Classless Inter Domain Routing (CIDR)
- · Widely used for Internet backbone
- Autonomous systems

Path Vector Protocol

 BGP is classified as a path vector routing protocol (see RFC 1322)

A path vector protocol defines a route as a pairing between a destination and the attributes of the path to that destination.

12.6.126.0/24 207.126.96.43 1021 0 6461 7018 6337 11268 i

AS Path

Definitions

- Transit carrying traffic across a network, usually for a fee
- Peering exchanging routing information and traffic
- Default where to send traffic when there is no explicit match is in the routing table

1

The default free zone is made up of Internet routers which have explicit routing information about the rest of the Internet, and therefore do not need to use a default route.

BGP General Operation Learns multiple paths via internal and external BGP speakers Picks the best path and installs in the forwarding table Policies applied by influencing the best path selection

Constructing the Forwarding Table

- BGP "in" process
 - receives path information from peers results of BGP path selection placed in the BGP table
 - "best path" flagged
- BGP "out" process announces "best path" information to peers
- Best paths installed in forwarding table if: prefix and prefix length are unique lowest "protocol distance"

External BGP Peering (eBGP) AS 100 AS 101 Between BGP speakers in different AS Should be directly connected

Do not run an IGP between eBGP peers

Internal BGP (iBGP)

- BGP peer within the same AS
- Not required to be directly connected
- iBGP speakers need to be fully meshed

they originate connected networks they do not pass on prefixes learned from other iBGP speakers

Stable iBGP Peering

- Peer with loop-back address
- iBGP session is not dependent on state of a single interface
- iBGP session is not dependent on physical topology
- Loop-back interface does not go down - ever!

Configuring Internal BGP

interface loopback 0 ip address 215.10.7.1 255.255.255 router bgp 100 network 220.220.1.0 neighbor 215.10.7.2 remote-as 100 neighbor 215.10.7.2 update-source loopback0 neighbor 215.10.7.3 remote-as 100 neighbor 215.10.7.3 update-source loopback0

Router B interface loopback 0 ip address 215.10.7.2 255.255.255 router bgp 100 network 220.220.5.0 neighbor 215.10.7.1 remote-as 100 neighbor 215.10.7.1 update-source loopback0 neighbor 215.10.7.3 remote-as 100 neighbor 215.10.7.3 update-source loopback0

Inserting prefixes into BGP

 Two ways to insert prefixes into **BGP**

redistribute static network command

Inserting prefixes into BGP redistribute static

Configuration Example:

router bgp 109 redistribute static ip route 198.10.4.0 255.255.254.0 serial0

- Static route must exist before redistribute command will work
- Forces origin to be "incomplete"
- Care required!

Inserting prefixes into BGP redistribute static

Care required with redistribute!

redistribute <routing-protocol> means everything in the <routing-protocol> will be transferred into the current routing protocol

Will not scale if uncontrolled

Best avoided if at all possible

redistribute normally used with "route-maps" and under tight administrative control

Inserting prefixes into BGP - network command

Configuration Example

```
router bgp 109
network 198.10.4.0 mask 255.255.254.0
ip route 198.10.0.0 255.255.254.0 serial0
```

- A matching route must exist in the routing table before the network is announced
- Forces origin to be "IGP"

Configuring Aggregation

 Three ways to configure route aggregation

redistribute static aggregate-address

network command

Configuring Aggregation

Configuration Example:

```
router bgp 109
redistribute static
ip route 198.10.0.0 255.255.0.0 null0 250
```

 static route to "null0" is called a pull up route

packets only sent here if there is no more specific match in the routing table

distance of 250 ensures this is last resort

care required - see previously!

Configuration Aggregation - Network Command

Configuration Example

```
router bgp 109
network 198.10.0.0 mask 255.255.0.0
ip route 198.10.0.0 255.255.0.0 null0 250
```

- A matching route must exist in the routing table before the network is announced
- Easiest and best way of generating an aggregate

Configuring Aggregation - aggregate-address command

Configuration Example

```
router bgp 109
network 198.10.4.0 mask 255.255.252.0
aggregate-address 198.10.0.0 255.255.0.0 [ summary-only ]
```

- Requires more specific prefix in routing table before aggregate is announced
- {summary-only} keyword

optional keyword which ensures that only the summary is announced if a more specific prefix exists in the routing table

Auto Summarisation

 Automatically summarises subprefixes to the classful network.

Example:

61.10.8.0/22 --> 61.0.0.0/8

 Must be turned off for any Internet connected site using BGP.

router bgp 109 no auto-summary

Synchronisation

- In Cisco IOS, BGP does not advertise a route before all routers in the AS have learned it via an IGP
- Disable synchronisation if:

AS doesn't pass traffic from one AS to another, or All transit routers in AS run BGP, or

iBGP is used across backbone

router bgp 109

no synchronization

Summary

- BGP4 distance vector protocol
- iBGP versus eBGP
- stable iBGP peer with loopbacks
- announcing prefixes & aggregates
- no synchronization & no auto-summary