

Routing Concepts

- IPv4
- Routing
- Forwarding
- Some definitions
- Policy options
- Routing Protocols

IPv4

- Internet uses IPv4

 addresses are 32 bits long
 range from 1.0.0.0 to 223.255.255.255

 0.0.0.0 to 0.255.255.255 and 224.0.0.0

 to 255.255.255.255 have "special"
- IPv4 address has a network portion and a host portion

IPv4 address format

 Address and subnet mask written as

12.34.56.78 255.255.255.0 or 12.34.56.78/24

mask represents the number of network bits in the 32 bit address

the remaining bits are the host bits

What does a router do?

A day in a life of a router

find path

forward packet, forward packet, forward packet...

find alternate path

forward packet, forward packet, forward packet,...

repeat until powered off

Routing versus Forwarding

 Routing = building maps and giving directions

"directions"

Forwarding = moving packets between interfaces according to the

IP Routing - finding the path

- Path derived from information received from a routing protocol
- Several alternative paths may exist best next hop stored in forwarding table
- Decisions are updated periodically or as topology changes (event driven)
- Decisions are based on:

topology, policies and metrics (hop count, filtering, delay, bandwidth, etc.)

IP route lookup

- Based on destination IP packet
- "longest match" routing more specific prefix preferred over less specific prefix

example: packet with destination of 10.1.1.1/32 is sent to the router announcing 10.1/16 rather than the router announcing 10/8.

IP Forwarding Router makes decision on which interface a packet is sent to Forwarding table populated by routing process Forwarding decisions: destination address class of service (fair queuing, precedence, others) local requirements (packet filtering) Can be aided by special hardware

Egress Traffic

- How packets leave your network
- Egress traffic depends on:
 - route availability (what others send you)
 - route acceptance (what you accept from others)
 - policy and tuning (what you do with routes from others)
 - Peering and transit agreements

Ingress Traffic

- How packets get to your network and your customers' networks
- Ingress traffic depends on:
 what information you send and to whom
 based on your addressing and AS's
 based on others' policy (what they accept
 from you and what they do with it)

Autonomous System (AS)

- Collection of networks with same routing policy
- Single routing protocol
- Usually under single ownership, trust and administrative control

Definition of terms

- Neighbours AS's which directly exchange routing information
- Announce send routing information to a neighbour
- Accept receive and use routing information sent by a neighbour
- Originate insert routing information into external announcements (usually as a result of the IGP)
- Peers routers in neighbouring AS's or within one AS which exchange routing and policy information

Routing flow and packet flow

For networks in AS1 and AS2 to communicate:

AS1 must announce to AS2

AS2 must accept from AS1

AS2 must announce to AS1

AS1 must accept from AS2

Routing flow and Traffic flow

 Traffic flow is always in the opposite direction of the flow of routing information

filtering outgoing routing information inhibits traffic flowing in

filtering incoming routing information inhibits traffic flowing out

Granularity of routing policy

- What to announce/accept
- Preferences between multiple accepts single route
 routes originated by single AS
 routes originated by a group of AS's
 routes traversing specific path
 routes traversing specific AS
 routes belonging to other groupings (including combinations)

Routing Policy Issues

- 80000+ prefixes (not realistic to set policy on all of them individually)
- 7500+ origin AS's (too many)
- routes tied to a specific AS or path may be unstable regardless of connectivity
- groups of AS's are a natural abstraction for filtering purposes

What Is an IGP?

- Interior Gateway Protocol
- Within an Autonomous System
- Carries information about internal infrastructure prefixes
- Examples OSPF, ISIS, EIGRP...

Why Do We Need an IGP?

ISP backbone scaling

Hierarchy

Modular infrastructure construction

Limiting scope of failure

Healing of infrastructure faults using dynamic routing with fast convergence

What Is an EGP?

- Exterior Gateway Protocol
- Used to convey routing information between Autonomous Systems
- De-coupled from the IGP
- Current EGP is BGP

Why Do We Need an EGP?

- Scaling to large network Hierarchy Limit scope of failure
- Policy

Control reachability to prefixes Merge separate organizations **Connect multiple IGPs**

Interior versus Exterior Routing Protocols

Interior

Exterior

automatic neighbour discovery

specifically configured peers

generally trust your **IGP** routers

connecting with outside networks

prefixes go to all IGP routers

set administrative boundaries

binds routers in one AS together

binds AS's together

Interior versus Exterior Routing Protocols

Interior

Carries ISP infrastructure addresses only

ISPs aim to keep the IGP small for efficiency and scalability

Exterior

Carries customer prefixes

Carries Internet prefixes

EGPs are independent of ISP network topology

