

### **BGP Scaling Techniques**

- How to scale iBGP mesh beyond a few peers?
- How to implement new policy without causing flaps and route churning?
- How to reduce the overhead on the routers?

# **BGP Scaling Techniques**

- Soft reconfiguration/Route Refresh
- Peer groups
- Route flap dampening
- Route reflectors
- (Confederations)



### **Soft Reconfiguration**

#### Problem:

- Hard BGP peer clear required after every policy change because the router does not store prefixes that are denied by a filter
- Hard BGP peer clearing consumes CPU and affects connectivity for all networks

#### Solution:

Soft-reconfiguration



1

### **Soft Reconfiguration**

- New policy is activated without tearing down and restarting the peering session
- Per-neighbour basis
- Use more memory to keep prefixes whose attributes have been changed or have not been accepted

# Configuring Soft reconfiguration

router bgp 100

neighbor 1.1.1.1 remote-as 101

neighbor 1.1.1.1 route-map infilter in

neighbor 1.1.1.1 soft-reconfiguration inbound

! Outbound does not need to be configured!

Then when we change the policy, we issue an exec command

clear ip bgp 1.1.1.1 soft [in | out]

### **Managing Policy Changes**

clear ip bgp <addr> [soft] [in|out]
 <addr> may be any of the following

x.x.x.x IP address of a peer

all peers

ASN all peers in an AS external all external peers

peer-group <name> all peers in a peer-group

### **Route Refresh Capability**

- Facilitates non-disruptive policy changes
- No configuration is needed
- No additional memory is used
- Requires peering routers to support "route refresh capability" - RFC2842
- clear ip bgp x.x.x.x in tells peer to resend full BGP announcement

### Soft Reconfiguration vs Route Refresh

 Use Route Refresh capability if supported

find out from "show ip bgp neighbor" uses much less memory

Otherwise use Soft Reconfiguration



### **Peer Groups**

#### Without peer groups

- · iBGP neighbours receive same update
- Large iBGP mesh slow to build
- Router CPU wasted on repeat calculations Solution - peer groups!
- Group peers with same outbound policy
- Updates are generated once per group

#### **Peer Groups - Advantages**

- Makes configuration easier
- Makes configuration less prone to error
- Makes configuration more readable
- Lower router CPU load
- iBGP mesh builds more quickly
- Members can have different inbound policy
- Can be used for eBGP neighbours too!

### **Configuring Peer Group**

```
router bop 100
```

neighbor ibgp-peer peer-group

neighbor ibgp-peer remote-as 100

neighbor ibgp-peer update-source loopback 0

neighbor ibgp-peer send-community

neighbor ibgp-peer route-map outfilter out

neighbor 1.1.1.1 peer-group ibgp-peer

neighbor 2.2.2.2 peer-group ibgp-peer

neighbor 2.2.2.2 route-map infilter in neighbor 3.3.3.3 peer-group ibgp-peer

! note how 2.2.2.2 has different inbound filter from peer-group !

### **Configuring Peer Group**

router bap 109

neighbor external-peer peer-group

neighbor external-peer send-community

neighbor external-peer route-map set-metric out

neighbor 160.89.1.2 remote-as 200

neighbor 160.89.1.2 peer-group external-peer

neighbor 160.89.1.4 remote-as 300

neighbor 160.89.1.4 peer-group external-peer neighbor 160.89.1.6 remote-as 400

neighbor 160.89.1.6 peer-group external-peer neighbor 160.89.1.6 filter-list infilter in



### **Route Flap Dampening**

Route flap

Going up and down of path

Change in attribute

Ripples through the entire Internet

**Wastes CPU** 

Dampening aims to reduce scope of route flap propagation

3

# Route Flap Dampening (Continued)

- Requirements
  - Fast convergence for normal route changes
    History predicts future behaviour
    Suppress oscillating routes
    Advertise stable routes
- Described in RFC2439

# Route Flap Dampening - Operation

- · Add penalty (1000) for each flap
- Exponentially decay penalty half life determines decay rate
- Penalty above suppress-limit do not advertise route to BGP peers
- Penalty decayed below reuse-limit re-advertise route to BGP peers



# Route Flap Dampening - Operation

- Only applied to inbound announcements from eBGP peers
- Alternate paths still usable
- Property Controlled by:

  Half-life (default 15 minutes)

  reuse-limit (default 750)

  suppress-limit (default 2000)
  - maximum suppress time (default 30 minutes)

# Flap Dampening: Enhancements

- Selective dampening based on AS-path, Community, Prefix
- Variable dampening recommendations for ISPs

http://www.ripe.net/docs/ripe-210.html

Flap statistics

show ip bgp neighbor  $\langle x.x.x.x \rangle$  [dampened-routes | flap-statistics]

# Configuring Route Flap Dampening

#### Fixed dampening

router bgp 100

bgp dampening [<half-life> <reuse-value> <suppresspenalty> <maximum suppress time>]

#### Selective and variable dampening

bgp dampening [route-map <name>]
route-map <name> permit 10
match ip address prefix-list FLAP-LIST

set dampening [<half-life> <reuse-value>
<suppress-penalty> <maximum suppress time>]

ip prefix-list FLAP-LIST permit 192.0.2.0/24 le 32









# **Route Reflector Topology**

- Divide the backbone into multiple clusters
- At least one route reflector and few clients per cluster
- · Route reflectors are fully meshed
- · Clients in a cluster could be fully meshed
- Single IGP to carry next hop and local routes

### Route Reflectors: Loop Avoidance

Originator\_ID attribute

Carries the RID of the originator of the route in the local AS (created by the RR)

Cluster\_list attribute

The local cluster-id is added when the update is sent to (added by the RR)

bgp cluster-id x.x.x.x

ISP/IXP Workshops 0 2000, Cisco Systems, Inc.

5

### **Route Reflector: Benefits**

- Solves iBGP mesh problem
- Packet forwarding is not affected
- Normal BGP speakers co-exist
- Multiple reflectors for redundancy
- Easy migration
- Multiple levels of route reflectors

### **Route Reflectors: Migration**

• Where to place the route reflectors?

Follow the physical topology!

This will guarantee that the packet forwarding won't be affected

Configure one RR at a time
 Eliminate redundant iBGP sessions
 Place one RR per cluster



### Configuring a Route Reflector

router bgp 100
neighbor 1.1.1.1 remote-as 100

neighbor 1.1.1.1 route-reflector-client

neighbor 2.2.2.2 remote-as 100

neighbor 2.2.2.2 route-reflector-client

neighbor 3.3.3.3 remote-as 100

neighbor 3.3.3.3 route-reflector-client

# **BGP Scaling Techniques**

 These 4 techniques should be core requirements on all ISP networks
 Soft reconfiguration/Route Refresh
 Peer groups
 Route flap dampening
 Route reflectors





### **Confederations: Principle**

- Best path sent to neighbour sub-AS
- Packet forwarding depends on next hop
- IGP carries next hops and local networks
- Preserve next hop across sub-AS eBGP



# **Confederation: Principle**

- Local preference and MED influence path selection
- Preserve local preference and MED across sub-AS boundary
- Sub-AS eBGP path administrative distance

## Confederations: Loop Avoidance

- Sub-AS traversed are carried as part of AS-path
- AS-sequence and AS path length
- Confederation boundary
- AS-sequence should be skipped during MED comparison



# **Confederations: Benefits**

- Solves iBGP mesh problem
- Packet forwarding not affected
- Can be used with route reflectors
- Policies could be applied to route traffic between sub-AS's

# **Confederations: Caveats**

- Minimal number of sub-AS
- Sub-AS hierarchy
- Minimal inter-connectivity between sub-AS's
- Path diversity
- Difficult migration
   BGP reconfigured into sub-AS
   must be applied across the network

